欢迎访问ag8娱乐 | ag8平台!

主页 > 产品中心 >

ag8娱乐化工搅拌器_百度文库

发布时间:2020-08-24 10:00

  化工搅拌器_能源/化工_工程科技_专业资料。德州市鸿泰环保设备有限公司搅拌技术研发中心

  德州市鸿泰环保设备有限公司化工搅拌器设计 第一页 化工搅拌器 1 绪论 1.1 搅拌器的概述 1.1.1 搅拌器的应用范围 机械搅拌反应器适用于各种物性(如粘度、密度)和各种操作条件(温度、压力) 的反应过程,广泛应用于合成材料、合成纤维、合成橡胶、医药、农药、化肥、染料、 涂料、食品、冶金、废水处理等行业。如实验室的搅拌反应器可小至数十毫升,而污水 处理、湿法冶金、磷肥等工业大型反应器的容积可达数千立方米。除用作化学反应器和 生物反应器外,搅拌反应器还可大量用于混合、分散、溶解、结晶、萃取、吸收或解吸、 传热等操作。 搅拌反应器由搅拌容器和搅拌机两大部分组成。搅拌容器包括筒体、换热元件及内 构件。搅拌器、搅拌轴、及其密封装置、传动装置等统称为搅拌机。 1.1.2 搅拌器的工作原理 通常搅拌装置由作为原动机的马达(电动、风动或液压),减速机与其输出轴相连的 搅拌抽,和安装在搅拌轴上的叶轮组成 减速机体通过一个支架或底板与搅拌容器相连。 当容器内部有压力时,搅拌轴穿过底板进入容器时应有一个密封装置,常用填料密封或 机械密封。通常马达与密封均外购,研究的重点是叶轮。叶轮的搅拌作用表现为“泵送” 和 涡流”,即产生流体速度和流体剪切,前者导至全容器中的回流,介质易位,防止 固体的沉淀并产生对换热热管束 (如果有)的冲刷;剪切是一种大回流中的微混合,可以 打碎气泡或不可溶的液滴,造成“均匀”。 1.1.3 化工反应中的搅拌设备 根据搅拌器叶轮的形状可以分成直叶桨式、开启涡轮式、推进式、圆盘涡轮式、锚 式、螺带式、螺旋式等}根据处理的掖体牯度不同可以分为低粘度液搅拌器。低粘度液 搅拌器,如:三叶推进式、折叶桨叶,6 直叶涡轮式、超级混合叶轮式 HR 100,HV 100 德州市鸿泰环保设备有限公司化工搅拌器设计 第二页 等;中高粘度液搅拌器如:锚式、螺杆叶轮式、双螺旋螺带叶轮型,MR 205,ag8娱乐305 超 混合搅拌器等等。 1.2 化工搅拌器的适应条件和构造 1.2.1 化工搅拌器的适应条件 搅拌加速传热和传质,在化工设备中广泛运用。化工搅拌器的作用使化工生产中的 液体充分混合,以满足化学反应能够最大程度的进行,该设备可以代替手动搅拌对人体 有毒或对皮肤有伤害的化工原料减少对人体的危害,同时通过电动机带动轴加速搅拌, 提高生产率。 搅拌加速传热和传质,在化工设备中广泛运用。搅拌的对象可以是液体 、 固体和气体,其中液体是必不可少的。最常见的液体是水,其粘度很低。液体也可能很 粘,如黄油在室温下可达 l,000,000 cP。液体中如加入过多的固体,如泥沙,会失 去流动性,成为泥团。这种物料也可搅拌,但不在本文叙述的范围内。 1.2.2 化工搅拌器的构造 化工生产过程中,通常用到的搅拌器种类有桨式搅拌器、涡轮式搅拌器、推进式搅 拌器、锚式搅拌器、框式搅拌器、螺带式搅拌器等。各类搅拌器由于其构造,性能等差 异,使其能够分别适用于化工生产中各种不同的工况。桨式搅拌器又可分为平直叶和折 叶搅拌器两种。这类搅拌器的结构和加工都比较简单。搅拌器直径 d 与釜径 D 之 比 d /D 为 0.35~0.8,其运转速度为 10~100r/min,为大型低速搅拌器,适用于低、 中等粘度物料的混合及促进传热,可溶固体的混合与溶解等场合。涡轮式搅拌器又可分 为开启涡轮式和圆盘涡轮式两类,每类又可分为平直叶、折叶、后弯叶三种。涡轮式搅 拌器外形结构上与桨式搅拌器类似,只是叶片较多。搅拌器直径 d 与釜径 D 之比 d/D 为 0.17~0.5,转速为 30~500r/min。旋转时有较高的局部剪切作用,能得到高分 散度微团,适用于气液混合及液液混合或强烈搅拌的场合,常用于低中等粘度物料 (μ5×10 cP)。就一开启式和圆盘式相比较而言,其构造上差异造成开启式比圆盘式循环 流量更大,轴向混合效果更好。推进式搅拌器也常被称为旋桨式搅拌器。顾名思义,其 叶片形式类似于轮船上的螺旋桨。搅拌器直径 d 与釜径 D 之比 d/D 为 0.2~0.5, 德州市鸿泰环保设备有限公司化工搅拌器设计 第三页 转速较高,为 100~800r/min。运转时产生较大的轴向循环流量,宏观混合效果较好, 适用于均相液体混合等搅拌不是非常强烈的以宏观混合为目的的搅拌场合,常用于低粘 度料液 (μ2000cP)的混合。框式搅拌器的搅拌外缘与釜壁间隙很小,d/D 为 0.9~ 0.98,此特点使得搅拌时物料不易产生死区。转速为 1~100r/min,为低速搅拌器, 只产生切线流,剪切作用小,无轴向混合,适用于高粘度物料的搅拌。如精细化工产品 涂料油漆、化妆品的生产过程中常用到此类搅拌器。螺带式搅拌器是把一定螺距的螺旋 形钢带固定在搅拌轴上,螺带外缘很接近釜壁。搅拌时,物料沿釜壁上升,沿轴向下运 动。适用于高粘度料液的混合。 1.3 课题的目的、意义、国内外现状 1.3.1 课题的目的、意义 化工反应中搅拌器的目的是借助搅拌器的作用使化工生产中的液体充分混合,以满 足化学反应能够最大程度的进行。该设备可以代替手动搅拌对人体有毒或对皮肤有伤害 的化工原料,结构简单,使用方便,在化工生产应用比较广泛。本课题要求设计一个小 型搅拌器,容积在 500 升左右,工作平稳灵活,使用方便。本题目主要涉及化工生产中 搅拌器的设备设计,主要解决的问题是化工生产中该设备的设计,包括:搅拌器的选择、 电动机及减速器的选型、支撑装置的设计、轴的选择及密封设置、搅拌容器的设计,并 画出相应的设备图。 1.3.2 搅拌器的发展史及现状 搅拌混合设备是一种应用广泛、品种繁多的流体机械产品,适用于化工、冶金、医 药、食品和饲料等领域。搅拌操作是工业反应过程的重要环节,它的原理涉及流体力学、 传热、传质及化学反应等多种过程,而搅拌器是为了使搅拌介质获得适宜的流动场而向 其输入机械能量的装置。因此搅拌器也叫做 Mixer,或叫做 Agitator,Stirrer。广义的搅拌 还包括将固体微粒分散悬浮在溶液里面或将溶液变成均匀的乳化液,因此它包括分散器 和均质机。某些搅拌器能产生极大的剪切力,以获得细化的粒子比胶体磨大 10 倍以上 的亚微米悬浮体,因此,可用于制造色拉酱、美容乳之类的精细食品和化学品。石化工 业常用于聚氯乙烯合金、顺丁橡胶合釜、反应釜、汽提釜等统称为搅拌容器(Agitatored 德州市鸿泰环保设备有限公司化工搅拌器设计 第四页 Vessels,或 Stirred Vessels)。 近年来,搅拌器和搅拌容器获得飞速发展的同时,正面临着满足合理利用资源、节 能降耗和对环境保护要求的严峻挑战。搅拌器和搅拌容器在服从装置规模经济化和品种 多样化的同时,正日趋大型化。日立制作所自 1949 年生产搅拌反应釜以来已为聚氯乙 烯、对苯二甲酸、苯乙烯单体、聚丙烯等装置生产了搅拌反应釜近 4000 台,容器的最 大容量达 576m3 ,最大直径达 7620 mm,圆筒部分最大长度达 44380 mm,设计压力最 大 28 MPa,设计温度最高 530 ℃,电机最大功率达 1100 kW。基于节能的要求,开发 出变频调速电机、小剪切阻力桨叶、以新型密封代替机械密封和填料密封,以磁力驱动 代替机械传动。基于降低产品总体成本、减少维修保养成本和提高设备平均维修间隔时 间的要求,大大提高了设备运行寿命。基于满足卫生和降低清洗和杀菌成本的要求,实 现了 CIP(就地清洗 )和 SIP(就地杀菌),提高了自动化水平,避免了人与产品的接触, 减少了人工操作和待机时间,大大提高了产品的卫生水平。 1.3.3 搅拌器的主要类型及其发展概况 根据搅拌器的形状可以分成直叶桨式、开启涡轮式、推进式、圆盘涡轮式、锚式、 螺带式、螺旋式等;根据不同液体的粘度可以分为低粘度液搅拌器、中高粘度液搅拌器。 低粘度液搅拌器,如:三叶推进式叶轮,折叶桨式 (2~4 折叶),6 直叶涡轮式,超级混 合叶轮式 (HR]O0,HV200)等 ;中高粘度液搅拌器如:锚式、螺杆叶轮式,双螺旋螺 带叶轮型,超混台搅拌器 (MR205,305)等。为了达到成品高精度、高品质化要求,国 外,特别是日本开发了新型的搅拌装置 ,以满足高粘度产品的生产需要。如倒圆锥形 螺带翼式搅拌器、超混合搅拌器、高性能浮动搅拌槽、超振动 α 型搅拌器等。 在对物料的搅拌操作中,人们希望实现多种搅拌目的,因此了解各种搅拌器的特点, 选择适宜的叶轮型式,设计出符合流动状态特性的搅拌器是非常重要的。搅拌槽内的液 体进行着三维流动,为了区分搅拌桨叶排液的流向特点,根据主要排液方向,按圆柱坐 标把典型桨叶分成径向流叶轮和轴向流叶轮 。齿片式、平叶桨式、直叶圆盘涡轮式和 弯曲叶涡轮式在无挡板搅拌槽中除了使液体产生与叶轮一起回转的周向流外,还由于叶 轮的离心力是液体沿叶片向槽壁射出,形成强 大有力的径向流,故称这些叶轮为径向 流叶轮。径向流叶轮搅拌器旋转时,将物料由轴向吸入再径向排出,叶率消耗大, 搅拌速度较快,剪切力强。如图 1.1、图 1.2 所示,是典型的径向流叶轮型式。 德州市鸿泰环保设备有限公司化工搅拌器设计 第五页 图 1.1 径向流叶轮 图 1.2 径向流叶轮 在湍流状态下,推进式叶轮除了产生周向流动外,还产生大量轴向流动,是典型的 轴向流叶轮。折叶涡轮式叶轮与直叶圆盘涡轮和弯曲叶涡轮式叶轮相比,轴向流成分较 多,多用于轴向流的场合。螺带式和螺杆式叶轮使高粘度物料产生轴向流动,也属轴向 流叶轮型式。轴向流叶轮搅拌器不存在分区循环,单位功率产生的流量大,剪切速率小 且在桨叶附近较大范围内分布均匀,具有较强的最大防脱流能力。如图 1.3、图 1.4 所 示,是典型的轴向流叶轮型式。 图 1.3 轴向流叶轮 图 1.4 轴向流叶轮 新型轴向流叶轮 在通常情况下,大量的搅拌设备用于低粘物系的混合和固一液悬浮操作,要求叶轮 能以低的能耗提供高的轴向循环流量。由于传统的推进式叶轮叶片为复杂的立体曲面, 虽能满足要求,但制造却很困难,亦不易大型化。因此竞相开发节能高效 、造价低廉 且易于大型化的第二代高效轴流搅拌器成为混合设备公司的目标。美国莱宁公司开发了 A310 和 A315 系列(如图 1.5,图 1.6 所示)。 德州市鸿泰环保设备有限公司化工搅拌器设计 第六页 图 1.5 A310 图 1.6 A315 国内如北京化工大学和华东理工大学等也分别开发了 CBY 轴流桨和翼型桨;中国 石油化工学院的沈惠平教授等人还研制开发了一种新型高效易于加工的轴流式搅拌叶 轮。它是一种空间扭曲板材型桨叶,从叶片端部看,它由许多相似的拱组成,与其所处 半径有关,且具有合理的叶片倾角、拱度及叶片宽度。 新型搅拌混合设备 近年来欧洲和 Et 本开发了很多种适用于高粘和超高粘物系的卧式自清洁搅拌设备。 瑞 士 卧 式 双 轴 全 相 (AllPhase) 型 搅 拌 机 就 是 典 型 的 一 例 。 如 图 1.7 所 示 。 图 1.7 瑞士 LIST 公司全相型自清洁反应器 德州市鸿泰环保设备有限公司化工搅拌器设计 第七页 图 1.8 复合式搅拌器的结构 另外,北京燕山石油化工有限公司设计院针对在大直径、低转速、介质较粘稠的 场合,设计了一种复合式搅拌器,很好地解决了无法配备大功率的电机,存在制造、检 修 以及安装的困难等问题。复合式搅拌器的结构如图 1.8 所示。 设备设计智能化的实现 根据混合专家的经验和常识,将搅拌混合设备与自动控制技术相结合,在混合设备 选型和设计中运用人工智能技术(AJ)和基于知识的系统(KBS),即实现了混合设备选型 和设计的智能化。 如图 1.9 所示,搅拌设备设计专家系统采用总设计任务控制各阶段设计分任务,分 任务调度相应的设计知识和数据,实现混合设备的专家系统设计的组织方法。通过仔细 的分析、归属,用智能化设计系统原型阶段性地实现混合设备的设计过程,可以把其表 示为一系列的设计过程的链式序列。各阶段相对独立又相互连续,其中每一个设计阶段 都将设计结构传递给后继设计过程 L6j。该系统从搅拌叶轮的选型、过程设计、机械设 计和经济分析评价,到最终机械绘图的全过程的都给出了智能化的计算机辅助设计。它 可应用于牛顿流体和非牛顿流体,液一液体系、固 一液体系和气 一液体系,并且可以 处理容积超过上百立方米的应用体系。20 世纪 90 年代以来,有关搅拌设备选型和设计 的专家系统在国外已有少量报道。如 1994 年美国 Chemineer 公司报道了该公司有一个 用于涡轮式搅拌设备设计的知识库软件 AgDesign,据称该公司 90%顶伸人搅拌器的设 德州市鸿泰环保设备有限公司化工搅拌器设计 第八页 备均已用此软件进行设计。芬兰的 Lappeenranta 工业大学在 1994 年发表了有关混合设 备初步设计的知识库系统的论文。在国内,浙江大学也正与大型石化企业合作开发搅拌 槽式反应器的智能化辅助选型和设计软件。 图 1.9 混合设计智能化设计系统实现结构 1.3.4 结语 搅拌操作是工业反应过程的重要环节,搅拌混合设备在化学工业中担当着非常重要 的角色。现代化学工业要求有更高更好的搅拌混合技术,鸿泰环保进行了改进传统搅拌 装置、研制新型混合设备;同时使用 LDV、PIV 和 EPT 等先进量测技术,运用计算流 体动力学知识,深入分析搅拌反应器内的流体流动机理和微观混合,安全和优化设计、 提高过程效率性能和降低失败风险,并最终提高反应产率。在这些现代先进技术的推动 下,搅拌混合技术一定会向一个更新的阶段发展。 1.4 本课题的设计思路 德州市鸿泰环保设备有限公司化工搅拌器设计 第九页 本课题的设备思路可分为以下步骤: 1、按设计要求可用的 D/T(轮径/罐径)值,和对搅拌时间、搅拌程度的要求,选定若 干个不同转速下的扭矩或功率要求; 2、选定合理的叶轮安装高度,结合设备情况,估计近似的搅拌轴长; 3、估计合理的电动机功率; 4、根据叶耗。输出轴、支架等等,选择能满足前三项要求的搅拌器; 5、按照叶尖切线速度等条件,确定最合适的转速,对设计进行优化,按已确定的条件, 对轴系进行动力和强度等因素的验算和分析。 2 搅拌容器的设计 2.1 搅拌容器的设计探讨 搅拌容器的作用是为物料反应提供合适的空间。搅拌容器的筒体基本上是圆柱筒, 封头常采用椭圆形封头、锥形封头和平盖,以椭圆形封头应用最广。下封头与筒体一般 为焊接连接,上封头与筒体也可采用焊接连接,但在筒体直径 DN≤1500mm 的场合多采 用法兰连接。 筒体的直径和高度是容器设计的基本尺寸。工艺条件通常给出设备容积 V 或操作容 积 V0 ,有时也给出筒体内径 Di,或者筒体高度 H1 和筒体内径 Di 之比(称为长径比), 其中 V0=nV,n 为装料系数,表明容器操作时所允许的装满程度,在确定搅拌容器的容 积时,其值通常可取 0.6~0.85.如果物料在反应中产生泡沫或沸腾状态,取 0.6~0.7;如 果物料在反应中比较平稳,可取 0.8~0.85. 一般搅拌罐根据罐内物料类型筒体的高径比可分为液固相、液液相 1~1.3,气液相 1~2. 据设计要求,要求搅拌器的容积在 500 升左右,液体粘度为 0.3Pa.s,液体的密度为 ρ=1500kg/m3,运转速度为 40r/min,v=5m/s。结合实际条件,本课题选用筒式搅拌器。 将搅拌器的外壳设计成圆筒形,搅拌器旋转时,把机械能传递给流体,在搅拌器附近形 成高湍动的充分混和区,并产生一股高速射流,使流体具有较高的压头,推动液体在搅 德州市鸿泰环保设备有限公司化工搅拌器设计 第十页 拌容器内循环流动。在圆筒的导流作用下,介质从简体的顶部和底部流入筒内,完成一 个循环,使介质产生高速的径向流和轴向流,同时加大介质流量,介质流动更均匀。 通过筒式搅拌器与涡轮式搅拌器和推进式搅拌器的功率对比试验,在相同的拌情况 下,筒式搅拌器将电能转化为机械能的效率更高,如图 2.1 所示。 图 2.1 三种搅拌器功率曲线) 筒式搅拌器的搅拌流型适于低黏度液体的搅拌,搅拌釜内的搅拌死角较少。 (2) 筒式搅拌器对电能的利用率高,在相同的情况下,筒式搅拌器的功率准数较小, 耗能少,表明筒式搅拌器在节能方面具有非常好的效果。 (3) 筒式搅拌器的搅拌混合效率高,在相同的情况下,是涡轮式和推进式搅拌器的 2~3 倍。 因此,本课题选用的筒式搅拌器能够满足设计的要求。 2.2 搅拌容器的设计计算 2.2.1 确定筒体的几何参数 (1)筒体型式 德州市鸿泰环保设备有限公司化工搅拌器设计 第 十一 页 选择圆柱形筒体 (2)确定内筒筒体的直径和高度 由于搅拌过程是液—液相混合,一般来说搅拌装置的高径比(H/D)为 1~1.3,本 次设计选用高径比为 1.2。已知搅拌容积是 500L,根据公式 D= 3 ? 4V ? ?H / D? (2.1) 可以计算处筒体的内直径 D=0.80m,筒体高 H=0.96 m。 (3)筒体材料的选择及估算筒体钢板的厚度 根据冶金手册产品的标准,我们选用普通碳素钢,根据 GB150—1998 中对碳素钢 的要求和钢板之间的差别,我们选用 Q235—B 热轧钢板,厚度尺寸选用 9mm。 (4)计算筒体的壁厚及强度校核 按照材料力学中的强度理论,对于钢制容器适宜采用第三、第四强度理论,但是由 于第一强度理论在容器设计史上使用最早,有成熟的实践经验,而且由于强度条件不同 而引起的误差已考虑在安全系数内,所以至今在容器常规设计中仍采用第一强度理论, 即 σ1≤[σ] 式中是器壁中 σ1 三个主应力中最大一个主应力。对于内压薄壁容器的回转壳体,轴向应 力 σθ 为第一主应力,径向应力 σψ 为第二主应力,而另一个主应力 σz 是径向应力,由 于 σθ、σψ 与 σz 相比可忽略不计,即 σ3=σz=0,所以第三强度理论与第一强度理论趋 于一致。因此在对容器个元件进行强度计算时,主要确定 σ1,并将其控制在许用应力范 围内,进而求取容器的壁厚。 容器圆筒承受均匀内压作用时,其器壁中产生的如下薄膜应力(圆筒的平均直径为 D,壁厚为 t): σθ= PD 2t σψ= PD 4t 很显然,σ1=σθ,故按照第一强度理论,有 德州市鸿泰环保设备有限公司化工搅拌器设计 第 十二 页 σ1 = PD ≤〔σ〕t 2t 在容器设计中,一般只给出内径值 Di,则 D=Di + t,将其代入上式,得 P(Di+t)/2t≤〔σ 〕t (2.2) (2.3) 容器圆筒在制造时由钢板卷焊而成,焊缝区金属强度一般低于木材,所以上式中的 〔σ〕t 应乘以系数 Ф。所以,考虑容器内部介质和周围大气腐蚀、供货钢板厚度的负偏 差等原因,设计厚度应比计算厚度大。设 t 为圆筒的计算厚度,则由上式可得 t ? pDt 2?? ?t ? ? p mm (2.4) 式中 p——设计内压力,Mpa Di——圆筒内直径,mm t ——计算厚度,mm Ф ——焊缝系数,Ф≤1.0 〔σ〕t——设计温度下圆筒材料的作用应力,Mpa。 式(2.4)即为内压圆筒厚度的计算公式。已知 Q235—B 钢的设计内压力 P1.6 Mpa, 选用 P=1.0Mpa,许用应力〔σ〕t=125 Mpa,〔σ〕=125 Mpa,Ф=0.5,所以计算厚度 t= (1.0×800)/(2×125×0.5—1)=7mm。代入公式(2.2)验算得 σ1=61.4〔σ〕=125 Mpa, 符合要求。 2.2.2 封头的设计 (1)封头的选型及计算 最常用容器封头包括半球形封头、椭圆形封头、碟形封头和无折边封头等凸形封头 以及圆锥形封头、平板封头等数种。这些封头都是压力容器的主要受压元件,由于与圆 筒筒体的连接处有较为复杂的边界条件,故有不同性质的应力存在,所以在对承受均匀 内压封头进行强度计算时,除了要考虑封头自身的薄膜应力外,还要考虑封头与圆筒筒 体连接处的不连续应力。 综上所述,根据本次设计的要求,从各个封头的受力分析、制造工艺和的应用场合 等各个方面综合考虑,我们选用标准椭圆形封头。如下图 2.2 所示 德州市鸿泰环保设备有限公司化工搅拌器设计 第 十三 页 图 2.2 封头 椭圆形封头是由半个椭球面和一圆筒直边组成,其结构设计充分吸取了半球形封头受力 好和碟形封头深度浅的优点,其应用最为广泛。由于椭圆形封头几何特征造成经线曲率 平滑连续,故封头中的应力分布比较均匀。椭圆形封头中的应力,包括由内压引起的薄 膜应力和封头与圆筒体连接处的不连续应力两部分。对于标准椭圆形封头,其 Di/2hi=2, K=1,则封头的厚度计算公式为 T=PDi/(2[σ]tφ-0.5p) (2.5) 其中长轴为 2a=Di=0.80m,hi/Di=0.25,所以 hi=0.2m,短轴之半 b=hi=0.2m。从式(2.5) 可知,标准椭圆形封头的厚度与筒体基本相同,若因 Ф 值有所不同,则相差也不会很大, 为焊接方便,常取两者等厚则 t=7mm。 (2)封头的强度校核 封头的厚度为 7mm,椭圆形封头的当量球壳内半径 R1=KD=1ⅹ800=800mm,用(6) A= 0.125?e =0.0015, R1 (2.6) 查得 B=120Mpa,由式(2.7) [P]= B? R 得[P]=1.05Mpa1.0125 Mpa。故封头壁厚取 7mm 可以满足稳定性的要求。 (2.7) 结论 一方面我们可以根据操作目的、操作条件、操作方法、原料和成品的特性、安全 等初选搅拌器叶轮的型式;另一方面还需要依据各种搅拌器叶轮的性能及其应用实例、 使用经验,综合考虑选择搅拌器。 德州市鸿泰环保设备有限公司化工搅拌器设计 第 十四 页 另一方面设计搅拌器时,除了运用经验和公式计算所需要动力、回转数等参数外, 还需要以中小模拟试验为基准,进行放大,以符合实际操作达到预期的效果。 最后必须改进现有的搅拌器和设计新型的搅拌器,达到合适的搅拌液体流动状态, 以适应各种粘度搅拌的需要和满足产品的性能要求,最终实现装置高效、节能的效果。 参考文献 [1] 潘红良,赫俊文主编.过程设备机械设计[M].上海:华东理工大学出版社,2006.7. [2] 郑津洋,董其伍,桑芝富主编.过程设备设计[M](第二版).北京:化学工业出 版社,2005.5. [3] 周志安. 化工设备设计基础[M]. 北京:高等教育出版社 1986.3. [4] 汤善甫,朱思明.化工设备机械基础[M](第二版).上海:华东理工大学出版社, 2004.12. [5] 殷玉枫.机械设计课程设计[M].机械工业出版社 ,2006.6. [6] 吴宗泽,罗圣国. 机械设计课程设计手册[M](第二版).北京:高等教育出版社, 1992.3.1. [7] 陈乙崇主编.搅拌设备设计[M].上海:上海科学技术出版社,1985. [8] 王凯,冯连芳.混合设备设计[M].北京工业出版社,2000. [9] 陈允中,汪霞倩.搅拌设备的设计与计算[M].石油化工设备技术,1997. [10] 张平亮.化工进展[J].1995 年第四期,44-49 [11] 张洪元主编.化学工业过程及设备[M].北京:高等教育出版社,1956. [12] 顾芳针,陈国桓.化工设备设计基础[M].天津大学出版社出版,1994.8. [13] 孙桓,陈作模,葛文杰.机械设计[M].高等教育出版社 2006.5. [14] 谭蔚主编.化工设备设计基础[M].天津大学出版社出版,2000.4. [15] 冯连芳,王嘉骏,顾雪萍,王凯.搅拌设备设计专家系统[J].化工机械.2001.2. [16] ASME Boiler & Pressure Vessel Code, Section Ⅷ,Rules for Constuction of Pressure Vessels, Division 1, 2004 [17] 87/404/EEC Simple Pressure Vessel Directive,1987 [18] 97/23/EC Pressure Equipment Directive,1997 [19] Zick, L.P.Stresses in Large Horizontal Cylindrical Pressure Vessels on Two Supports. Welding Journal Research Supplement, 1951,30:435~445 德州市鸿泰环保设备有限公司化工搅拌器设计 第 十五 页